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ABSTRACT

The structure and relative stereochemistry of the novel silphiperfolane-type sesquiterpene cameroonan-7r-ol (1) were confirmed by a total
synthesis of (±)-1 from 3,3,5-trimethylbicyclo[3.3.0]oct-1(8)-en-2-one (6) by means of a Sakurai reaction with (Z)-crotylsilane, free radical
hydrobromination, base-induced cyclization, and LiAlH4 reduction.

The isolation and structure assignment of the novel tricyclic
sesquiterpene alcohol (-)-cameroonanol (1) from the es-
sential oil ofEchniops giganteusvar. lelyi rhizomes, and its
association with the strong patchouli-like woody fragrance
of the oil, were reported recently by P. Weyerstahl et al.1

The co-occurrence of (-)-1 with a myriad of related tricyclic
sesquiterpenes (e.g., (-)-silphiperfol-6-ene,2) belonging to

the silphinane and silphiperfolane classes of triquinanes
suggests a common biogentic origin from (E,E)-farnesyl
diphosphate (3) through the presilphiperfolan-8-yl carbo-
cation (4) branch point followed by ring contractions to the
secondary silphinan-1-yl (not shown) and cameroonan-7-yl

(5) ions1,2-4 (Scheme 1). The formation of a secondary tri-
fluoroacetate corresponding to1-OCO2CF3 in the trifluoro-

acetic anhydride-induced dehydrative rearrangement of presil-
phiperfolanol to22a presaged the in vivo biosynthesis of this
biogenetically significant natural product. The assignment
of the structure and relative stereochemistry of (-)-1was
based upon1H NMR, 13C NMR, and NOE spectra of
cameroonanol and its 7â epimer prepared from (-)-1 by
H2CrO4 oxidation and LiAlH4 reduction together with
considerations of likely biogenetic mechanisms.1 This Letter
discloses the first total synthesis of (()-cameroonanol in four
steps from the known bicyclic enone65 and independent
spectral evidence confirming the aforementioned structural
and configurational deductions.
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The additional carbons needed to form the third ring were
introduced by stereoselective conjugate allylations of enone
6 by means of the Sakurai reaction6 (Scheme 2). 3,3,5-

Trimethylbicyclo[3.3.0]oct-1(8)-en-2-one (6) was prepared
according to literature procedures5 with significant modifica-
tions for large scale.7 Reaction of6 with allyltrimethylsilane
(1 M TiCl4, CH2Cl2, -78 °C, 20 min; 0°C, 10 min; H2O)
afforded the single conjugate adduct7 (82%).8 Similar
Sakurai reactions of6 with (Z)- and (E)-2-buten-1-yltri-
methylsilanes9,10 gave 1.1-1.3:1 (87%) and 1:1.8 (86%)
mixtures11 of the corresponding anti and synR-methylallyl
isomers8a and8b according to GC and NMR analysis [1H
NMR (500 MHz, CDCl3): δ 1.01 (d, 3 H,J ) 6.4 Hz, anti);
1.06 (d, 3 H,J ) 6.8 Hz, syn)].

The three bicyclo[3.3.0]octan-2-ones7, 8a, and8b were
shown to have the thermodynamically more stable cis ring
fusion stereochemistry.12 Treatment of a 1:1 mixture of8a
and 8b with KOH and MeOH-d4 led to 90% deuterium
incorporation at the C1 position (δH

CDCl3 2.21 and 2.29 for
8a and 8b, respectively) with no evidence of isomer
formation according to GC and NMR comparisons. Assign-
ment of the 1,8-anti stereochemistry expected from attack
on the convex face of6 is based upon the coupling between
the vicinal protons at C1 and C8 (3J ) 3.6, 3.4, and 5.1 Hz)
in the 500 MHz1H NMR spectra.13 The relative configura-
tions of the methyl group in the methylallyl side chains of

8aand8b were established by conversion of the 1:1.8 isomer
mixture from the Sakurai reaction with the (E)-2-butenyl-
silane to lactones10a and10b (Scheme 3).

Reduction of the8a and8b mixture with lithium tri-sec-
butylborohydride (THF, 0°C, 97%) gave a similar mixture
of secondary alcohols9a and9b having a trans relationship
of the hydroxyl and angular methyl groups (3J for syn C1
and C2 hydrogens) 5.3 and 5.5 Hz).13 Ozonolysis of the
side chain double bond (O3, MeOH, -78 °C; Me2S; 87%)
followed by NaClO2 oxidation (aqueous tBuOH, 1 M
H2PO4

- buffer, pH∼3.5, isoprene)14 provided the hydroxy
acids (1:1.8, 86%) which were cyclized (TsOH, PhH, reflux,
75 min) to a chromatographically separable mixture of
δ-lactones (IR 1736 cm-1) 10a (13%) and 10b (23%)
accompanied by some of the major hydroxy acid component
(19%). The equatorial configuration of theR-methyl group
in the minor isomer and its axial orientation in the major
isomer were established from the1H NMR coupling constants
for theR (H1′) andâ (H8) protons (10a,J ) 12.2 Hz;10b,
J ) 5.0 Hz) in these conformationally fixedδ-lactones (10a
and10b). The possibilities of epimerization or isomer ratio
inversion during the conversion of the9a and9b mixture to
lactones10aand10b were negated by converting10b back
to 9b (iBu2AlH, toluene, -40 °C; Ph3PdCH2, THF). It
follows that the minorR-methallyl adduct (8a) formed in
the Sakurai reactive with (E)-crotylsilane (i.e., the major
adduct produced with (Z)-crotylsilane) has side chain ster-
eochemistry corresponding to that of cameroonanol.

Mixtures of 8a and8b (1:1 and 1:1.8) obtained from the
Sakurai reactions with (Z)- and (E)-crotyltrimethylsilanes
were subjected to photochemically induced free radical
hydrobromination (254 nm, HBr gas flow, rt, 13 min; 72-
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73%)15 (Scheme 4). Base-induced cyclizations of the result-
ing mixtures of bromo ketones11 [1:1 and 1:1.8 ratios;1H
NMR (500 MHz, CDCl3) δ 0.90 (d, 3 H,J ) 6.6 Hz, anti
1′-CH3), 0.94 (d, 3 H,J ) 6.2 Hz, syn 1′-CH3)] with 1 M
KOtBu/THF (rt, 1.5 equiv, 10-15 min) afforded 1:1 and
1:1.6 mixtures (83% and 77%) of (()-cameroonanone (12)
and (()-9-epicameroonanone (13). The isomeric ketones
were isolated in pure form by flash chromatography on silica

gel (0.75% ether-pentane). The1H NMR (500 MHz,
CDCl3), 13C NMR (126 MHz, CDCl3), IR (CCl4), and MS
(EI, 70 eV) data agree well with the corresponding literature
data for (+)-12.1 The relative stereochemistry of (()-12was
verified independently by NOE experiments (750 MHz,
C5D5N) illustrated in12A, together with assignments for the
geminal methyls (δH 1.04, 1.09) by HMBC cross-peaks.

Reduction of (()-12 with LiAlH 4 (ether, 0°C)1 afforded
a chromatographically separable 1.4:1 mixture (86%) of
(()-cameroonan-7R-ol ((()-1, mp 48-49 °C) and (()-
cameroonan-7â-ol (14, mp 62-63 °C). The spectral data for
(()-1 [1H NMR (500 MHz, CDCl3), 13C NMR (126 MHz,
CDCl3), IR (CCl4), and MS (EI, 70 eV)] match well with
the corresponding literature data for (-)-1.1

Conversion of (()-1 and (()-14 to the trifluoroacetate
derivatives ((CF3CO)2O; py; 0°C; 67% and 49%) followed
by spectral and GC comparisons with the secondary tri-
fluoroacetate obtained from the reaction of natural presil-
phiperfolan-8-ol with trifluoroacetic anhydride2a established
the identity of the rearrangement product as cameroonan-
7R-yl trifluoroacetate.

The total synthesis of (()-cameroonanol confirms the
structure and relative stereochemistry of this novel sesqui-
terpene alcohol and opens up possibilities for studies of the
biogenetic rearrangements of the cameroonanol epimers.
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